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OVERVIEW 

 

This is the Final Report of the Project 

Cognitive Attention Models for Driver Engagement in Intelligent and Semi-autonomous Vehicles 

Project Lead: John Lee (UW) 

Emerson Electric Quality & Productivity Professor 
Department of Industrial and Systems Engineering 
Email: jdlee@engr.wisc.edu 
Office: 608-890-3168 Fax: 608-262-8454 
513 University Avenue, Madison, WI 53706 

Other Investigators: Donald Fisher (UMass), Abdollah Homaifar (NCA&T), David Woods (OSU) 

Project Description 

The focus of this project is to improve the state-of-the-art in human cognitive modeling in order to more accurately 
describe the human-machine interfaces that take place in the pre-crash scenarios. This project develops a cognitive 
attention model that provides a fundamental understanding and analysis capability for driver attention. In 
particular, the model will be used to understand how drivers respond to vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) information cues in pre-crash scenarios. It also addresses how to re-engage a driver who may 
be partially or completely disengaged from key attention elements while operating a semi-autonomous vehicle. 
We seek to understand driver engagement over a range of human physiological and behavioral factors, including 
age and drowsiness. 
 
As vehicle systems become more autonomous, human drivers engage in other activities and tasks—in other 
words, drivers disengage from the driving situation. This is especially true of look-ahead functions that support 
early responses to defuse risky situations, such as taking back vehicle control when entering an area with a high 
density of pedestrians. It will be especially important to monitor for these situations as vehicle systems become 
more autonomous. Re-engagement can take many forms, such as alerting/warning, redirecting driver attention to 
look ahead to developing risk, directing the driver to take charge of some control functions while automation 
handles others, or reconfiguring automated subsystems. 
The primary approach we will pursue is the development and use of a computational model of attention. 
Computational simulations of attention now exist that can be applied to the re-engagement challenge for driving 
and added to driving simulators as a new resource. We have been developing one that is specifically designed to 
handle situations where multiple sensors and algorithms assess anomalies and risk at multiple temporal and spatial 
scales. This simulation of attention can be used for design of warnings and automation to facilitate re-engagement. 
It can also be used as a critical measuring tool to assess the effectiveness of re-engagement under different 
conditions and with different types of response to pre-crash risk assessment. While the model is general, our focus 
in the CrIS UTC is to develop the model as it applies to the pre-crash University Transportation Centers Program 
time interval; this interval will be longer than the immediate pre-crash interval, because of the importance of 
modeling attention state before the immediate event, and because we hypothesize that early attention-engagement 



strategies will significantly improve pre-crash safety. 
The overall Project was undertaken with the collaboration of four Universities and involved three specific thrusts. 
In the following pages, the research accomplished will be presented in terms of these three thrusts in three 
subprojects. 
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ABSTRACT 

Purpose: Rear-end collisions are common, accounting for 32.4% of all crashes in the United 

States. Vehicle-based safety technologies, such as forward collision warning systems, may be 

useful in preventing these crashes, or mitigating their severity. Safety benefits of such warning 

systems can be estimated using computer simulations, and driver models are crucial to 

simulation-based benefits estimation. Most applications use driver models based on the 

information-processing framework within which the behavioral parameters, such as reaction 

times and deceleration rates, are often sampled from independent distributions. Accounting for 

dependence between model parameters using mathematical functions called copulas might 

improve the accuracy of driver models. The study investigates if models that account for 

associations should be used in the place of models that consider parametric independence. 

Methods: Data from a driving simulator experiment, in which some drivers were warned of 

impending collision by a forward collision warning system and others were not, were used to 

develop the driver models. Eight driver models—four independent-stage models and four 

copula-based dependent-stage models—were developed for two rear-end collision-imminent 

situations. Measures of crash risk and crash severity were estimated by simulating the driver 

models in computational counterfactual simulations of the collision-imminent events. 

Results: Associations between the driver model parameters indicate that assumptions of 

independence might be invalid. The results from the counterfactual simulations show that the 

copula-based dependent-stages models predict larger reductions in estimated crash risk and 

severity than the independent-stages models. Model predictions of crash risk and severity show 

that the predictions of the copula-based dependent-stages models vary differentially from the 

independent-stages models across different initial event kinematics. 

Conclusions: Copulas provide a viable means for modeling dependencies between driver model 

parameters. The resulting models generate different safety benefits estimates of collision warning 

systems compared to independent-stage models. This suggests that the assumption of 

independence might be an oversimplification of collision-avoidance driver behaviors, and shows 

the need for models that account for the associations between model parameters. The results 

discussed in this paper have implications for evaluating vehicle safety systems, designing vehicle 

automation algorithms, and improving driver safety. 
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1. INTRODUCTION 

Rear-end collisions occur when one vehicle collides with the rear of another vehicle (National 

Highway Traffic Safety Administration, 2014).  These collisions are prevalent in the United 

States—in the year 2014, they contributed to 32.4% of all crashes and 6.6% of all fatal crashes 

(National Highway Traffic Safety Administration, 2014). Forward Collision Avoidance and 

Mitigation (FCAM) systems help drivers avoid rear-end collisions, and in the event of a crash, 

reduce crash severity (Jermakian, 2011). FCAM systems warn the driver of imminent collision, 

or warn and then perform a combination of braking and steering actions to substitute for, or 

amplify, the driver’s collision avoidance actions. FCAM systems have the potential to prevent or 

mitigate 70% of all police reported rear-end crashes in the United States, 57% of all non-fatal 

rear-end injury crashes, and 48% of fatal rear-end crashes (Jermakian, 2011).  

A persistent challenge to the design of these systems is the quantification of how their algorithms 

(e.g., design of timing, alert modality, alert duration, and urgency) affect safety. Estimation of 

safety benefits during the design process can identify potential improvements prior to large-scale 

fleet deployment of these technologies (Kusano, 2013). Safety benefits can be measured as the 

number of crashes prevented (crash risk); and if a crash is unpreventable, as the severity 

reduction in occupant injuries (crash severity). The comparative benefits of a specific algorithm 

over alternatives, or over the absence of the FCAM system, will predict which alternative 

maximizes safety outcomes. The traditional approach to benefits’ estimations uses observations 

from human-in-the-loop experiments typically conducted in driving simulators, test-track 

environments, or as naturalistic studies. Increasingly, computer simulations—the use of 

computers to represent the process dynamics of a system (e.g., driver, vehicle, or situation) with 

a mathematical model of that system—are emerging as practical alternatives, particularly during 

the FCAM design process. In particular, a technique called counterfactual analysis is gaining 

increased attention for use in estimation of safety benefits (Bargman, Boda, & Dozza, 2017; 

Victor et al., 2015). Counterfactual analysis provides a means of simulating many different 

component behaviors, such as driver behaviors, event kinematics, or FCAM algorithms, for a 

given safety-critical event and predicting outcomes for each configuration of the components. 

Driver models—mathematical representations of driver behavior—are an integral part of 

simulation-based benefits analysis. Accurate driver models are required for valid and 
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generalizable estimates of safety benefits (Bargman et al., 2017; Markkula, Benderius, Wolff, & 

Wahde, 2012; McLaughlin, Hankey, & Dingus, 2008). The most commonly used models have 

been developed based on the information-processing approach. These models assume that driver 

behavior can be treated as independent and sequential stages of sensation, perception, decision-

making, and action. Models with these assumptions are called as the independent-stages models 

in this paper.  

Contrary to the assumptions, the distinct stages of driver behavior are unlikely to be independent 

of each other. Empirical evidence suggests different features of the information may be 

processed in parallel across multiple stages (Cowan, 1988). These parallel stages can influence 

each other, leading to interdependence rather than independence across stages. Representing 

such dependencies between stages as associations between driver model parameters might 

improve the accuracy of benefits estimates. Copula functions (Frees & Valdez, 1997; Yan, 2007) 

can be used to model associated variables as multivariate joint distributions, without the 

assumption of multivariate normality or the need to cast variables in explanatory-response 

relationships as in a regression analysis. Samples drawn from the multivariate distribution can be 

used as parameter values in driver models. Models that account for associations between the 

driver’s behavioral outcomes within the information-processing framework, such as correlation 

between reaction time and deceleration rate, are called as dependent-stages models in this paper. 

Differences in safety benefits estimated from independent- and dependent-stages models would 

indicate the utility of considering more complex models of driver behavior: should models that 

consider parametric associations be used in the place of simpler models that assume parametric 

independence? 

This study explored the use of copula-based dependent-stages models as viable alternatives to 

independent-stages models in benefits’ estimations of a forward collision warning system. Two 

rear-end collision scenarios were considered in which FCAM systems might offer important 

safety benefits. The first scenario was imminent collision with a stopped lead vehicle. Collisions 

with a stopped lead vehicle were identified as the third most-harmful pre-crash scenario, 

contributing to approximately USD $30 billion in comprehensive crash costs and about 200,000 

functional years lost from the US population between 2004 and 2008 (Najm et al., 2013). The 

second scenario was imminent collision with a decelerating lead vehicle. Collisions with a 

decelerating lead vehicle were ranked as the eighth most harmful pre-crash scenario, with about 
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USD $12.5 billion in comprehensive crash costs and approximately 85,000 functional years lost 

in the same time period (Najm et al., 2013). These two scenarios contribute to 15% of all annual 

crash-related costs (Najm et al., 2013) and more than two-thirds of all annual rear-end collision-

related costs. 

Driver behavior data in these two scenarios were collected using a driving simulator. Some 

drivers in the experiment were warned of imminent collision using a forward collision warning 

(FCW) system, whereas others received no warning (baseline control group). The driver model 

parameters were brake reaction time, jerk, and a constant deceleration rate. Two driver models 

were developed to describe braking behaviors in four categories (two warning conditions in each 

of two collision scenarios). The driver model is stated as: “The following driver initiates a 

braking response with a constant jerk j, at a constant deceleration rate α, after a reaction time 𝜏𝜏 

upon the driver’s sensation of the lead vehicle braking.” The dependent-stages driver models 

accounted for the association between the three variables by sampling from trivariate joint 

distributions; the independent-stages driver models sampled the variables from independent 

distributions. Thus a total of eight driver models were developed; these models were then each 

applied in counterfactual simulations to simulate the models in the same collision-imminent 

kinematics as the experimental drivers. Crash risk and crash severity measures were used to 

quantify the safety benefits of the FCW system in comparison to outcomes from the no-warning 

baseline condition. 

2. DRIVER MODELS AND SAFETY BENEFITS 

The information-processing approach is perhaps the most influential psychological framework 

applied to driver behavior models. The central idea supporting the approach is that information 

flows through a person in a finite number of discrete stages—external stimuli is sent from the 

sensory organs as symbolic codes to the neuronal networks in the brain, these codes are 

transformed by cognitive processes (e.g., decision making and response selection) to muscle 

actions (Figure 1). Actions are then performed upon the environment (J. D. Lee, Wickens, Liu, & 

Boyle, 2017; Wickens & Carswell, 2012). 
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Figure 1. Model of driver response based on an information processing model. Adapted from (J. D. Lee et al., 
2017). 

2.1 Independent-Stages Models 

The independent-stages models are based on two central assumptions of the information-

processing approach. First, as represented in Figure 1, these models treat driver behavior as 

independent stages (e.g., sensation, perception, decision-making, and action). Second, behavior 

is usually assumed to be constant over the duration of each of these stages, for example, a 

constant deceleration is applied to simulate drivers’ braking behaviors in the action stage, and 

feedback-based response correction is seldom considered. The current analysis tests if the 

independent stages approach is consistent with how drivers actually respond. 

One common representation of the independent-stages model can be described thus: “the 

following driver initiates a braking response at a deceleration level α after a reaction time 𝜏𝜏 upon 

the onset of a stimuli (e.g., illumination of brake lights of lead vehicle or the onset of a forward 

collision warning).” Reaction times and deceleration profiles are not constant, nor consistently 

correlated, across drivers or across situational kinematics (M. Green, 2000; Summala, 2000). In 

one application, a log-normal distribution of reaction time (M = 1.21 s, SD = 0.63 s) derived 

from a naturalistic study (Sivak, Olson, & Farmer, 1982) has been used in FCAM benefits’ 

estimation (Kusano & Gabler, 2010, 2012). The authors used discrete values for deceleration—

0.2 g (1.96 m/s2) for soft and 0.4 g (3.92 m/s2) for hard braking responses. The values for 

reaction time and deceleration rates differ between models used for benefits estimations across 

automakers (Lee & Peng, 2005); often the models assume constant values of reaction times and 

deceleration rates for all drivers and situations (Bella & Russo, 2011; K. Lee & Peng, 2005). The 
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deceleration profiles typically resemble a step-response with infinite jerk j, which is impossible 

to achieve. Models that parameterize jerk are rare (Bargman et al., 2017; Markkula, Engström, 

Lodin, Bärgman, & Victor, 2016), however, jerk seems to reflect the perceived urgency of the 

situation well (Markkula et al., 2016), making the case for including jerk as a driver model 

parameter. With the inclusion of jerk as a model parameter, the model in this paper is specified 

as follows:  

“The following driver initiates a braking response with a constant jerk j and a deceleration rate α 

after a reaction time 𝜏𝜏 upon the driver’s sensation of the lead vehicle braking.”  

The focus of the analysis is on the parameterization of the model: should associations between 

the parameters (𝜏𝜏, j, α) be considered? 

2.2 Dependent-Stages Models using Copula Functions 

Information processing is rarely sequential; features of acquired sensory data are most likely 

simultaneously processed (Cowan, 1988). Behavior is a product of these dependent processes 

and the observed variables are better represented as co-occurring phenomena. Driver models 

may be better representative of the driver’s behavior if the observed associations between 

parameters can be modeled. 

Few driver models have accounted for such associations. One notable example is a study by 

Fitch and colleagues (2008) in which the safety benefits of a FCAM system for heavy vehicles 

were estimated. The reaction time parameter in their driver model was sampled from a 

distribution of perception-reaction time. Linear regression was then used to model the parametric 

association using deceleration level as the response variable and perception-reaction time as the 

explanatory variable. However, under the dependent-stages perspective, neither variable 

necessarily explains the other. Instead, both outcomes should be jointly observed and modeled as 

the products of the flexible behavioral process. When the focus is on understanding and 

replicating the co-occurrence of behavioral outcomes, regression models—with focus on 

explaining outcome variables using explanatory variables—may not be suitable to model the 

association (Frees & Valdez, 1997). Regression-based models and correlations (such as 

Pearson’s correlation coefficient) typically assume normal distributions and linear dependence; 

however, it is likely that a behavioral process such as collision-avoidance is non-linear with 
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different associations between the tails and centers of the multivariate joint distributions of the 

outcome variables.  

In mathematics the word ‘copula’ denotes a set of functions that models the association between 

variables in multivariate distributions (Sklar, 1959). Copulas have been widely used in 

economics and financial applications (Durante & Sempi, 2010; Melchiori, 2003), biological 

system behavior modeling (Kim et al., 2008), crash-related injury modeling (Eluru, Paleti, 

Pendyala, & Bhat, 2010; Yasmin, Eluru, Pinjari, & Tay, 2014), and recently in driver behavior 

modeling (Venkatraman, Lee, & Schwarz, 2015). Copula-based multivariate distributions can be 

described using two components: the marginal distribution functions of each variable and a 

copula function that describes the interdependence. Association between variables can be 

described using a flexible set of measures including distance measures, and correlation 

coefficients such as the non-parametric and monotonic Kendall’s tau or Spearman’s rho 

(Rüschendorf, 2013). In this sense, a copula isolates the marginal functions from the dependency 

structure (Aas, Czado, Frigessi, & Bakken, 2009; Yan, 2007), such that the marginal 

distributions do not influence the estimation of dependency. 

A multivariate distribution is a copula C between [0, 1] with unit uniform marginal distributions. 

According to Sklar’s theorem, every multivariate distribution F with marginal distribution 

functions F1(x1), … , Fn(xn) can be written as a copula C (Sklar, 1959): 

F(x1, … , xn) = C{F1(x1), … , Fn(xn)} 

The copula, in turn, can be represented using the inverse distribution functions, F−1(x) 

C(u1, … , un) = F{F1−1(u1), … , Fn−1(un)} 

In the trivariate case, a continuous vector X is formed from the variables X1, X2, and X3 

X = (X1, X2, X3) 

Using probability integral transformation, the vector X can be transformed into the unit uniform 

distribution U in [0, 1] such that any desired marginal functions can be applied to the 

transformed random variables. Correlation coefficients, such as Kendall’s tau and Spearman’s 

Rho, if used as the measure of association, are invariant under this transformation (Fredricks & 

Nelsen, 2007; Frees & Valdez, 1997). Kendall’s tau is more robust to the effects of outliers in 

small sample sizes, as typical in crash data, and was used in this paper.  
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Multivariate copulas of three or more dimensions, or variables, can be represented by vine 

structures. Vines split the dimensions into pair-copulas—bivariate copulas on the unit uniform 

square [0, 1]2. These pair-copulas measure dependency between pairs of dimensions, and then 

build up the multi-dimensional distribution from the pairs. Association parameters are calculated 

based on conditional probabilities. Bivariate copulas from a wide range of parametric families 

(Durante & Sempi, 2010; Frees & Valdez, 1997; Melchiori, 2003) can be fit to the data using 

vine pair-copulas (Schepsmeier et al., 2016).  

2.3 COUNTERFACTUAL ANALYSIS USING COMPUTER SIMULATIONS 

Counterfactual analysis is a model-based simulation technique increasingly used in safety 

benefits applications. The underlying assumption is that the observed event outcome is one 

possible realization of a stochastic process, and that by modeling the process that generated it, 

we can produce a better estimate of the full distribution of likely event outcomes. Safety critical 

events from experimental or naturalistic data are identified, and the benefits of the safety system 

in each event is estimated by running simulations using different FCAM algorithms, or with the 

presence and absence of the FCAM system (Bargman et al., 2017). Each counterfactual 

simulation will replace the original driver’s behavior from the experiment or naturalistic event, 

with an instance of driver behavior generated by the driver model. Safety-relevant outcomes are 

predicted using crash risk and severity (CR/S) measures. The combination of outcomes from all 

simulations of one experimental event provide model-based CR/S measures for that event. 

Combining outcomes from multiple events for one type of crash (e.g. collision with a stopped 

lead vehicle) provides model-based CR/S measure for that crash type. In transportation research, 

counterfactual simulations have been used in traffic modeling and accident reconstruction (Davis 

& Swenson, 2006; McLaughlin et al., 2008), and safety benefits estimations using data from 

naturalistic studies (Bargman et al., 2017; Victor et al., 2015).  

The design of counterfactual simulations for benefits analysis typically proceeds as follows: 

1. Kinematic information (positions, speeds, accelerations), environmental information 

(weather, road condition), as well as drivers’ behaviors (reaction times, deceleration 

profiles) from relevant safety critical events are extracted either from naturalistic data or 

human-in-the-loop experiments. Driver behavior data may be used to create or tune 

driver model parameters.  



12 
 

2. The objectives of the analysis drive the identification of an anchor point in the event. The 

anchor point specifies the instant in time prior to which the facts of the actual event for 

the following driver hold true. Starting from the anchor point, the event is simulated 

counterfactually; for example, the human driver’s evasive maneuvers are removed and 

replaced by behavior generated by a driver model. The location of the anchor point in the 

event timeline is therefore an important decision that influences the accuracy and 

relevance of the predictions to the analysis objectives. The event kinematics and 

environmental information at the anchor point is used to set the initial state conditions of 

the simulation variables, such as vehicle velocities and separation distances. Multiple 

simulations are performed for each experimental event.  

 

Figure 2. Counterfactual simulations. The top graph represents the experimental event speed time-series for 
the two vehicles. The bottom graph represents the counterfactual simulations for that event. 

In Figure 2, the top graph represents the speed profiles of the lead vehicle (orange curve) and the 

subsequent collision avoidance response of the following driver’s vehicle (blue curve) from the 

experimental event. The orange vertical line indicates the instant in time (x-axis) when the lead 

vehicle starts decelerating; the blue vertical line is the corresponding following driver’s onset of 

braking. The bottom graph represents the counterfactual simulations for that event—the lead 
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vehicle behavior is retained, as is the following driver’s response up until the anchor point (green 

vertical line). The anchor point in this study is defined as the instant of time in which each driver 

in an event looked back at the forward roadway, away from the secondary task, just before 

starting a braking avoidance maneuver. The different gray-colored curves indicate model-based 

braking profiles simulated after the anchor point. Note that the anchor point in the current 

analysis pertains only to the behavior of the following driver’s vehicle; the lead vehicle 

movement is retained as in the original experimental event. 

2.4 MEASURES OF CRASH RISK AND CRASH SEVERITY 

The choice of measures in quantifying benefits is important (Green, 2015). To quantify safety 

benefits of the forward collision warning system in this study, crash risk and crash severity were 

measured. Crash risk is measured as the probability of crashes—ratio of the number of crashes to 

total crash and non-crash outcomes. Crash severity is defined only for crashes. Severity can be 

described using kinematics-based and injury–based measures. 

Delta Velocity (Delta-V): This kinematics-based measure is the change in velocity of the 

involved vehicles at the point of impact. In Equation 1, we assumed that the masses of the two 

vehicles are identical (m), while the speeds at impact are V1 and V2. V0 is the initial velocity of 

the following vehicle. 

Delta − V =  V0 −
m1V1+m2V2

2m
   (1) 

Maximum Abbreviated Injury Scale (MAIS): The Abbreviated Injury Scale classifies injury 

severity of occupants on a 1 to 6 integer scale: 1 being minor injury and 6 being fatal injury. 

MAIS is the most severe injury suffered by a person involved in an accident (Kusano & Gabler, 

2012). We used MAIS 1+, MAIS 2+, and MAIS 3+ injury probability calculated from Delta-V 

(kmph); the relationship was derived from 2001-2014 NASS Crashworthiness Data System 

(CDS) with logistic regression (Equations 2 – 3). We filtered the dataset to include MAISn+ only 

for a passenger vehicle rear-ending another vehicle. The logistic regression may include 

predictors other than Delta-V, such as seat belt use, but we estimated predictions for the simplest 

case (i.e., average belt use, average age, etc).  

 MAIS 1+ =  exp(−0.53+0.056∆V)
1+ exp(−0.53+0.056∆V)

   (2) 
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MAIS 2+ =  exp(−3.3+0.064∆V)
1+exp(−3.3+0.064∆V)

   (3) 

MAIS 3+ =  exp(−4.5+0.069∆V)
1+exp(−4.5+0.069∆V)

   (4) 

3. SIMULATOR EXPERIMENT  

The driving simulator experiment was conducted in 2010 at the National Advanced Driving 

Simulator (NADS) facility in Iowa City, Iowa. A specific goal of the experiment was to 

understand drivers’ collision avoidance behaviors in rear-end situations as aided by warnings 

from forward collision warning systems (Lerner et al., 2011).  

A 2 (collision scenario) x 2 (scenario order) x 3 (warning system) mixed-factorial design was 

used. Drivers in the experiment were exposed to two distinct rear-end collision scenarios—an 

imminent collision with a stopped lead vehicle and an imminent collision with a decelerating 

lead vehicle. Collision scenario was a within-subjects variable—all drivers experienced both 

scenarios—scenario order and warning system were between-subjects variables. The order in 

which the stopped lead vehicle and decelerating lead vehicle events were administered was a 

between-subjects variable. Half the participants, balanced by gender, experienced the collision-

imminent event with a stopped lead vehicle first, followed by the decelerating lead vehicle event. 

The other participants experienced the events in reverse order.  

The forward collision warning system was a between-subjects variable—16 participants were 

randomly assigned, balanced by gender, to each of three possible conditions. One group was not 

aided by any warning—baseline no-warning condition.  A second group was aided by a 

combination visual and auditory warning. The visual alert was delivered as a heads-up display 

LED strip. The lights flashed for 4 seconds at a pulse train period of 200 ms, and a 50% duty 

cycle. The audio alert was delivered as a tone that beeped for a total length of 4 seconds at a 

period of 400 ms, and a 50% duty cycle. A third group was aided by a haptic brake pedal pulse 

warning—no visual or auditory alert was applied. A momentary deceleration (duration ~ 150 ms) 

of approximately 0.22 g was applied; this was not expected to substantially affect speed profiles 

when the driver initiated braking.  
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3.1 Participants 

A total of 48 participants (gender-balanced) between 35 and 55 years of age were recruited for 

the study. Participants were included based on multiple criteria—health, driving experience, use 

of driving equipment and technology in their vehicle; as well as self-reported potential for 

distraction while driving. Specifically, participants reported being in good general health, held a 

valid drivers’ license for at least two years prior to the study, and drove a minimum of 10,000 

miles per year. Participants who reported owning a vehicle equipped with a forward collision 

warning system, and those that reported never engaging in distracting tasks while driving, were 

excluded.  

After providing informed consent, participants received information on the vehicle technologies 

(e.g. forward collision warning system, infotainment system, seat design, etc.) and the secondary 

task by watching a self-paced slide-deck presentation. Next, participants practiced driving in the 

simulator to facilitate their adaptation to the vehicle controls, secondary task, and simulator 

visuals. After the practice session, participants engaged in a single 35-minute drive. 

3.2 Apparatus 

The NADS-1 is a high fidelity, immersive driving environment (Figure 3, left) with a 360-degree 

field of view and a large motion base that allows for sustained acceleration cues. All participants 

drove a 1996 Chevy Malibu sedan. A Face Lab™ 5.0 eye-tracking system was mounted above 

the steering wheel (Figure 3, right). Four camera views including a view of the driver’s face were 

recorded. 

Figure 3. NADS-1 driving simulator (left). Driver position in the cab with the forward roadway view, and eye 
tracker mounted above the steering wheel (right). 
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3.3 Scenario Specifications 

Drivers were asked to follow a lead vehicle in the right lane of a two-lane bidirectional rural 

highway. The posted speed limits for both events were 55 mph. In the decelerating lead vehicle 

event, the vehicle directly ahead of the driver’s vehicle decelerated for approximately 2.0 

seconds to a speed of approximately 20 mph and then accelerated. In the stopped lead vehicle 

event, the vehicle ahead of the driver very abruptly decelerated to a stop. 

3.4 Secondary Task 

A tracking task involving a simulated insect on a touch-display was used to ensure that the 

participants’ focal and peripheral visual attention would be diverted away from the roadway at 

the start of the imminent collision events (Lerner et al., 2011). The task required the participants 

to turn and reach into the rear passenger compartment to trace the path of a moving insect on a 

touch screen display. The insect buzzed to indicate the start of the task, and continued to buzz 

until the participant successfully caught it. The insect was controlled by an algorithm that moved 

it away from the participant’s finger in random directions at varying speeds. The insect was 

designed in such a way that it could not be caught until the forward collision event had been 

triggered, i.e., the lead vehicle had started decelerating in either scenario. 

4. RESULTS 

Event time-series data (e.g., speeds, brake pedal forces, steering movements) were collected at 

240 Hz from the NADS-1 driving simulator and down-sampled to 60 Hz for analysis. The R 

statistical software (R Core Team, 2017) was used for data preparation and analysis. Eye tracker 

data were extracted to mark the times at which the driver’s gaze moved towards or away from 

the forward roadway (equivalently, front windshield). 

Ninety-six rear-end collision events were expected to be extracted from the dataset (48 

participants x 2 collision scenarios). However, a substantial number of events were removed 

either because of missing data in the eye-tracker or simulator time-series (29 events, ~ 30%), or 

because the participant primarily steered during the event with very little braking (3 events, ~ 

3%). Hence, data from 64 events were extracted (~ 67% of dataset), of which there were 35 

stopped lead vehicle events and 29 decelerating lead vehicle events. Eleven of the stopped lead 

vehicle events and 10 of the decelerating lead vehicle events were in the baseline no-warning 
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condition. Due to the small number of available events, events with the two FCAM warning 

modes (brake pedal pulse and visual auditory) were combined. A simple linear regression model 

was fit to predict each of the three variables—brake reaction time, jerk, and maximum 

deceleration—with the warning condition (warning present and baseline) and event order. No 

significant differences in brake reaction time, jerk, or maximum deceleration rate due to the 

warning mode were observed in either the decelerating or stopped lead vehicle events; except in 

the stopped lead vehicle events in which the main effect the presence of a warning system 

resulted in reduced jerk (p < .05). No significant main effects due to event order were found in 

either scenario (p > .05). The events were therefore separated into four groups based on the 

collision scenario and the warning condition: collision with either a decelerating lead vehicle or a 

stopped lead vehicle, in the presence or absence of a forward collision warning system.  

The objective of the analysis was to quantify the benefits of a forward collision warning system 

on collision avoidance over its absence in each of the scenarios. Time-series data of driver 

responses (braking and steering profiles), warning onset (for those events with warnings), eye 

glance data (eye orientation), and event kinematics (vehicles’ speeds, positions, accelerations) 

were combined. The time at which each driver’s visual attention returned forward just before the 

driver’s evasive response started, was marked (TV). The time of FCAM warning onset, other than 

in the baseline condition, was recorded (TW). The warnings were set to be triggered at 

approximately 3.5 s time to collision. In the baseline condition, TW was marked as the time when 

this time to collision threshold was crossed. The visual perceptual conditions in this study were 

generally supra-threshold at the time that the participants looked back at the roadway—the rates 

of change of optical angle were greater than or equal to 0.01 rad/s (Markkula et al., 2016). 

Therefore, the brake reaction time (BRT) was calculated as the time to the start of evasive 

braking—application of brake force greater than 13.4 N (3.0 lbf)—from the time of eye glance 

return to the forward roadway (TV). Note that this is not from the start of the warning trigger for 

the following reason: The insect task was not completely successful in visually distracting the 

driver long enough for the warnings to fire. Instead, many drivers looked back at the roadway 

before the warning onset, but after the lead vehicle started decelerating, in all but 3 of the 64 

events. Hence, estimated brake reaction times were generally greater than 3.5 s. The brake 

reaction time (s), jerk (g/s), and the maximum deceleration (g) applied by the driver in each of 

the 64 events were extracted for use in the driver models. The NADS-1 affords high 
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deceleration, greater than 1.0 g (9.81 m/s2), due to ideal conditions that may be rare in normal 

driving, but not uncommon in collision-imminent events where drivers brake to vehicle limits (S. 

E. Lee, Llaneras, Klauer, & Sudweeks, 2007; Markkula et al., 2012). It was therefore assumed 

that braking to the vehicle limits was intended by the drivers in the experiment and maximum 

deceleration from each event was extracted and used in the models.  

4.1 Estimated values for the independent-stages model parameters 

Four independent-stages models were created from the experimental dataset. In each of these 

models, the brake reaction time, jerk, and deceleration variables were sampled from independent 

univariate distributions based on the four combinations defined by collision scenario and 

warning condition (Table 1). 



19 
 

Collision Scenario Warning System Variable 

Parameters 

Mean 

Log 
SD Log 

Stopped lead vehicle 

System present 

Brake reaction time (s) 1.56 0.19 

Constant jerk (g/s) -1.00 0.40 

Constant deceleration (g) -0.19 0.22 

System absent 

Brake reaction time (s) 1.67 0.23 

Constant jerk (g/s) -0.60 0.36 

Constant deceleration (g) -0.02 0.21 

Decelerating lead 

vehicle 

System present 

Brake reaction time (s) 0.66 0.53 

Constant jerk (g/s) 0.88 0.49 

Constant deceleration (g) -0.22 0.23 

System absent 

Brake reaction time (s) 0.81 0.58 

Constant jerk (g/s) -0.88 0.22 

Constant deceleration (g) -0.39 0.58 

Table 1. Parameter values for the independent-stages models. All variables are fit to the lognormal 
distribution. 

4.2 Estimated values for the dependent stages model parameters 

The VineCopula package in R (Brechmann & Schepsmeier, 2013; Schepsmeier et al., 2016) was 

modified to include small sample sizes (≥ 10 instead of strictly > 10), and used to develop the 

dependent stages driver models. Experimental driving data usually contains smaller numbers of 

data (8-12 participants in each condition) and care should be taken in interpreting the measures 

of associations and other parameters estimated from small samples.  
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BRT, jerk, and deceleration variables were transformed to the unit uniform distributions, and the 

dependency structure of the pair-copulas was specified using a regular vine form. Kendall’s tau 

was used as the measure of association, and the best-fit copula family for each of the different 

models was selected (Table 2). Note that copula functions were fit to eight of the twelve pair-

copulas; only four were estimated to be independent distributions. The inverse probability 

integral transformation was then applied to the copula-based trivariate unit distribution to obtain 

the lognormal trivariate distribution of BRT, jerk, and deceleration, which was sampled and 

applied to the driver model parameters. The pair-wise distributions for the stopped lead vehicle, 

system present condition are shown in Figure 4. 

Collision 

Scenario 

Warning 

System 
Vine pair copula Tau Copula family 

Copula 

Parameter, θ  

Stopped lead 

vehicle 

Warning 

system 

BRT, Jerk 0.31 180 Rotated Clayton 0.91 

Jerk, Deceleration 0.48 180 Rotated Clayton 1.87 

(Deceleration, BRT) | Jerk 0.33 Independent 0.00 

Baseline 

BRT, Jerk 0.24 Gaussian 0.53 

Jerk, Deceleration 0.75 180 Rotated Gumbel 2.73 

(Deceleration, BRT) | Jerk 0.05 Independent 0.00 

Decelerating 

lead vehicle 

Warning 

System 

BRT, Jerk 0.30 Gaussian 0.50 

Jerk, Deceleration 0.58 Gumbel 2.19 

(Deceleration, BRT) | Jerk 0.20 Independent 0.00 

Baseline 

BRT, Jerk 0.07 Independent 0.00 

Jerk, Deceleration 0.24 180 Rotated Gumbel 1.80 

(Deceleration, BRT) | Jerk -0.16 270 Rotated Clayton -1.36 

Table 2. Copula Families and Parameter Values for the Dependent-Stages Models. 
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4.3 Counterfactual simulation set-up 

In addition to the driver model parameters, 

state variables that denote the event 

kinematics at the return of drivers’ attention 

(at TV) were extracted to set up the initial 

event conditions in the counterfactual 

simulations.  

The R statistical software (R Core Team, 

2017) was used for the counterfactual 

simulations. A simple vehicle dynamics 

model based on the equations of motion was 

developed to simulate the movement of both 

the lead and following vehicles. The initial 

conditions depended on the particular event 

being simulated. Twenty thousand 

simulations were performed for each of the 

64 experimental events—10,000 of these 

sampled the three variables from a trivariate 

copula distribution (dependent-stages 

model), and 10,000 simulations sampled 

variables from three independent univariate 

distributions (independent-stages model). 

Thus, a total of 1.28 million simulations were 

performed. 

4.4 Estimation of safety benefits 

Crash risk was estimated as the proportion of 

crashes, and crash severity measures were 

calculated for those counterfactual 

simulations that resulted in a crash. The two 

sample, two-tailed Kolmogorov-Smirnov test 

 
Figure 4. Pair-wise distributions for the trivariate 
copula (stopped lead vehicle, warning system 
condition). BRT and jerk, as well as, jerk and 
deceleration are modeled as 180° rotated Clayton 
copulas. The jerk and deceleration pair-copula as 
modeled as an independent distribution. The black 
dots represented the sampled observations from the 
simulated copula. The red stars represent the data 
from the human-driver experimental events. 
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was used to perform pairwise comparisons between Delta-V distributions predicted by the 

dependent and independent stages models. Each of the four pairwise comparisons reported in 

Table 3 indicate that the values come from different distributions and the cumulative density 

functions of the dependent stages models are stochastically greater than the independent stages 

models. Therefore, the copula-based dependent stages models predict less severe crashes in 

every condition than the independent stages models.  

Collision Scenario Model 1 Model 2 Warning K-S test 

D p-value 

Stopped lead vehicle Dependent 

Stages Model 

Independent 

Stages Model 

Baseline 0.03 p < .001 

Warning System 0.06 p < .001 

Decelerating lead 

vehicle 

Dependent 

Stages Model 

Independent 

Stages Model 

Baseline 0.02 p < .001 

Warning System 0.04 p < .01 

Table 3. Comparison of Delta-V similarity between the two models across scenarios.  

Figure 5 shows the cumulative density function of Delta-V from the simulated crashes. The 

difference between predictions of the independent- and dependent-stages models in both warning 

conditions of the decelerating lead vehicle scenario is small (though statistically significant as 

shown in Table 3)—both models similarly predict crash severity. A larger difference is observed 

between model predictions in the stopped lead vehicle scenario. To understand the effect of these 

differences on the predicted safety benefits, the percent reduction in CR/S measures were 

estimated.  
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Figure 5. Comparison of the cumulative density function for Delta-V between the independent- (dashed lines) 
and copula-based dependent-stages (solid lines) models across warning and collision scenario conditions. The 
warning “system” conditions are in red color; “baseline” no-warning conditions are in gray. 
The percent reduction in a CR/S measure (e.g. crash risk, MAIS) when a FCAM system is used, 

in comparison to the baseline, predicts the safety benefits of the system.   

Percent reduction in crash risk and severity =  100∗(CR/SBaseline − CR/SWarning System)
CR/SBaseline

  (5) 

Crash risk, median values of Delta-V, and median values of MAIS 1+, 2+, and 3+ injury 

probability were estimated using Equations 1-4 for all the models; the safety benefits were 

estimated using Equation 5. Table 4 lists the percent reductions in CR/S measures when using a 

forward collision warning system in comparison with a baseline no-warning. The dependent-

stages models predict higher safety benefits of the forward collision warning system—higher 

percent reductions in crash risk and severity—than the independent-stages models. The 

differences in predicted outcomes range from approximately 1% to 11%. 
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Collision 

Scenario 

Driver 

Model 

%reduction 

in crash risk 

%reduction 

in median 

Delta-V 

%reduction 

in median 

MAIS 1+ 

%reduction 

in median 

MAIS 2+ 

%reduction 

in median 

MAIS 3+ 

Stopped 

lead vehicle 

Independent 

Stages 

-8.02 15.53 6.44 22.46 26.95 

Dependent 

Stages 

2.84 18.41 7.83 25.69 30.46 

Decelerating 

lead vehicle 

Independent 

Stages 

54.82 0.64 0.27 0.80 0.95 

Dependent 

Stages 

55.76 2.52 1.05 3.12 3.68 

Table 4. Percent reduction in crash risk and median crash severity measures. 

When the predictions of the independent- and dependent-stages model are compared in each 

event, however, the percent difference in median delta-V ranges widely (Figure 6). This suggests 

that the benefits predictions of the dependent-stages model predict outcomes for certain event 

kinematics better than others. 
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Figure 6. Comparisons between the independent and dependent stages models in the stopped lead vehicle-
warning system condition. Percent reduction in median delta-V is labeled in each event. Cumulative density 
function for delta-V are plotted. 
5. DISCUSSION 

Models based on the information-processing approach are commonly used to estimate safety 

benefits of vehicle technologies; however, the validity of their assumptions in representing 

drivers’ response processes has repeatedly been questioned. The empirical evidence for parallel 

processing of different features of the sensed information across different stages and memory 

stores—equivalently, in different cognitive processes—indicates that the observed behavior 

cannot sufficiently be approximated as a linear, unidirectional, independent process, but is a 

flexible product of interdependent co-occurring processes (Cowan, 1988). Dependencies 
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between the stages can be mathematically represented using measures of association between 

behavioral variables; considering the response process in terms of dependent stages can more 

accurately represent the information-processing mechanisms than the independent-stages 

models.  

Copula functions were used in this paper to model these associations as the dependent-stages 

models. As shown in Table 2, the presence of bivariate pair-copulas for eight of the twelve pair-

copula distributions indicates that the assumption of independence between these variables is 

invalid. Independence is predicted between brake reaction time and deceleration in three of the 

four cases (Table 2) only when conditioned on jerk, suggesting that assumptions of independence 

in bivariate models with brake reaction time and deceleration might also be incorrect. In 

comparison with the independent-stages models, the copula-based models predict lesser crash 

risk and severity (Table 3 and Figure 5) as well as larger reduction in estimated benefits when 

using a forward collision warning system across all experimental conditions (Table 4). The 

reductions range from 1% - 11%. 

Improvements to the quality and quantity of the data might improve the results of this type of 

simulation-based safety benefits analysis. The secondary task manipulation used in the simulator 

experiment was not completely successful in distracting the drivers until the warnings fired; this 

would have improved the accuracy of safety benefits predicted specifically as a function of the 

warning system. In terms of quantity, as with most human-in-the-loop experiments in driving, 

the participant sample used in the analysis is small. Estimations of copula fits, of parametric 

associations as correlation measures, and of the parameters of the marginal distributions, may be 

less accurate than desired.  

The predictions of the dependent-stages and independent-stages models are differentially 

different between the stopped and decelerating lead vehicle events, as shown in Figure 5. This 

might partly be due to potential differences in collision-avoidance behavioral strategies across 

crash types. Copulas might help capture the range of strategies across different crash events. A 

related application of copulas is in describing time-dependent covariates between measures. 

Models that account for time-dependent covariates capture mechanisms and strategies used by 

drivers better than those that ignore such interrelations between measures (Donmez, Boyle, & 

Lee, 2008). The two models differentially predict outcomes even within a particular crash type 
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across different initial event conditions. An example from one experimental condition is given in 

Figure 6. These differences indicate that ‘one model type may not fit all’; the information 

processing framework may be failing to capture certain dynamics of drivers’ braking behaviors. 

Models based on the direct perception framework (Flach, Smith, Stanard, & Dittman, 2003; 

Gibson, 1979)—perception is assumed to occur in the light rather than in the brain—might be 

more suitable to model collision-avoidance. These models have been applied in modeling driver 

braking and steering profiles (D. N. Lee, 1976; Markkula et al., 2016; Salvucci & Gray, 2004), 

and the choice to brake or steer in imminent rear-end collision situations (Venkatraman, Lee, & 

Schwarz, 2016). Thus far, most models have assumed a linear combination of perceptual 

variables as predictors of driver behaviors; copulas might expand these models by describing the 

associations between the perceptual dimensions.  

Driver models have a long history, but are still immature. For the better part of the last century, 

attempts have been made to understand the complexities of drivers’ routine and collision-

imminent behaviors (Brown, Lee, & McGehee, 2000; Gibson & Crooks, 1938; Markkula et al., 

2012; Michon, 1985; Plöchl & Edelmann, 2007; Ranney, 1999). Successful interventions of 

vehicle safety technology depend on the accuracy and robustness of the predictions of these 

driver models. Estimates of safety benefits are only as good as these models (e.g., vehicle 

dynamics, driver model, scenario models) used in the simulations, and driver models are less 

mature than models of vehicle dynamics and sensor systems (Markkula et al., 2012). 

Fundamentally, the assumptions of the information-processing approach are insufficient in 

modeling cognitive processes; representing the dependencies between these cognitive processes, 

as well as external situational variables, is critical assessing the benefit of increasingly 

sophisticated vehicle technologies. Copulas provide a viable means for modeling these 

dependencies. 
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3.2 The Smooth Transfer of Control Between the Responsible Human Driver and the Artificial 
Driving Suite (ADS)  

This sub-project asked several questions about bumpless transfer of control in shared control 
between human driver and Artificial Driving Suite (ADS). How does the responsible human 
transfer authority to the ADS for it to handle the vehicle within a defined limit of authority or a 
safe operational envelope (SOE)? Then when the situation and context change — the ADS is 
reaching the end of the delegated operational envelope — how does the human take back 
authority resuming direct control or re-task the ADS within a new limit of authority? 

Note how this work introduces new concepts about human-autonomy systems.  The automation 
is not a thing but rather a suite or network of automated computations which are based on 
multiple sensor inputs/processing and represent a software intensive system.  To call a vehicle 
autonomous commits the reification fallacy mistaking a network of interacting processes as if it 
were a single thing (see Feltovich, P. J., Hoffman, R.R., Woods. D.D. and Roesler, A. (2004). 
Looking at Cognitive Engineers Doing Cognitive Engineering:  Implications of the Reductive 
Tendency for the Design of Complex Sociotechnical Systems.  IEEE Intelligent Systems, 19(3), 
90-94.).  Thus an accurate label for autonomous capabilities in cars is Artificial Driving Suite or 
ADS.  An ADS and all ADS’s have limits, some of which derive from the creeping complexity 
costs associated with software intensive networks. This basic constraint means that an ADS has 
an operational envelope, and its ‘safe’ operational envelope changes with as environment, 
purpose, consequences and capabilities change.  As an artificial system all ADS are 
fundamentally at risk of failure due to brittleness. Brittle systems experience rapid performance 
collapses, or failures, when events challenge boundaries. One difficulty is that the location of the 
boundary is normally uncertain and moves as capabilities, context, and interdependencies 
change. Overcoming the fundamental brittleness risk for automated systems with autonomous 
capabilities requires utilizing techniques to build and sustain resilient performance based on 
concepts from Resilience Engineering.  

Paper 1 “The Risks of Autonomy: Doyle’s Catch”1 provides an overview of the risks that emerge 
as autonomous capabilities are deployed increasing the scale and complexity of the resulting 
integrated system.  Paper 2 “Four Concepts of Resilience and the Implications for Resilience 

1 Woods, D. D. (2016). The Risks of Autonomy:  Doyle’s Catch. Journal of Cognitive Engineering and Decision Making, 10(2), 
131-133. 



 

 

 

 

  

 

 
 
 

 

 

 
 

 

  

Engineering”2 explains basics and addresses misconceptions about the factors that produce 
resilient performance.   

Based on this foundation, the project developed a new architecture for shared control of vehicles 
with autonomous capability based on Resilience Engineering concepts.  The architecture directly 
addresses the brittleness problem and designs the means for bumpless re-engagement in shared 
control systems where human roles and ADS interact through delegating, monitoring and 
changing a shared SOE. 

The new architecture for shared control in human-autonomy systems was developed with 
additional funding from National Science Foundation jointly with adaptive control engineers 
from MIT. The key to the approach for resilient shared control is regulating the parameter of 
Capacity for Maneuver (CfM) – the remaining range or capacity to continue to respond to 
ongoing and upcoming demands. Control then should seek to minimize the risk of exhausting a 
unit’s capacity for maneuver as that agent responds to changing and increasing demands (risk of 
saturation).  In the scenarios studied Capacity for Maneuver is lost when the ADS is reaching the 
end of the delegated operational envelope. The increasing risk of saturating CfM triggers re-
engagement and re-authorization of a new SOE.  The results indicate resilient shared control 
based on reducing the risk of saturating CfM allows for timely and effective human re-
engagement following an anomaly. Paper 3 “A Shared Pilot-Autopilot Control Architecture for 
Resilient Flight. IEEE Transactions on Control Systems Technology”3 provides the details of the 
new architecture and demonstrates the benefits for simulations of vehicles and human operators. 

3.3 Assessing the Risks of Autonomy through Regulation of Maximum Safe Operating 
Envelopes 

Current methods to develop and deploy autonomous capabilities focus on potential benefits and 
downplay new risks.The risks are associated with the increasing complexity of the computational 
and sensing resources needed to deliver autonomous capabilities.  As this complexity increases, 
new risks appear and grow — related to the brittleness of complex systems, risks that cannot be 
addressed with conventional approaches using levels of automation or improved human-machine 
interfaces.  This subproject looked at new directions to consider benefits and risks when 
deploying new autonomous capabilities.  First, based on additional funding on Human-
Autonomy Teaming from NASA via joint work with Georgia Institute of Technology, considered 
a new model for risk-informed calculation of maximum safe operating envelopes for delegating 

2 Woods, D. D.  (2015). Four Concepts of Resilience and the Implications for Resilience Engineering. Reliability Engineering 
and Systems Safety, 141, 5-9. doi:10.1016/j.ress.2015.03.018. 

3 Farjadian, A. B., Annaswamy, A. M.,  Thomson, B. and Woods, D. D. (2018). A Shared Pilot-Autopilot Control Architecture for 
Resilient Flight. IEEE Transactions on Control Systems Technology. Revised. 



 
 

   

 

 

 
 

 
 

 

 

 

 
 

 

  

    
 

 

  
 

  

authority to ADSs. The work explored feasibility of near real-time computation and utilization of 
maximum safe operating envelopes (SOE) to regulate transfers of authority between an ADS and 
responsible human roles.  This initial work identified the need to develop a new method for 
Resiliency Trade Space Studies to assess and mitigate potential risks from deployments of 
autonomous capabilities. The new method was demonstrated, with follow on funding from 
NASA, on a real current case of deploying new autonomous capabilities — “A Resiliency Trade 
Space Study of Detect and Avoid Autonomy on Drones When Communications are Degraded.” 
Paper 4 presents the method for Resiliency Trade Space Studies of new deployments of 
autonomous capabilities.4 

Foundational Results 

The above work also led to a major advance in Resilience Engineering applicable to autonomous 
systems.  The advance is a the first comprehensive theory about networks of people and machine 
agents as an adaptive system.  The theory was crucial to the development of the above project 
results and can guide other innovative designs of human-autonomy systems.  Paper 5 “The 
Theory of Graceful Extensibility: Basic Rules that Govern Adaptive Systems.”5 presents the 
formal general theory.  The theory is already being applied to other systems with high autonomy 
(Grayson, 2018).  
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